
Design of Software Model Checker
Mrs. Rupali Kale1

Abstract— In a few cases, modeling languages have been designed to resemble programming languages, although the focus has been on protocol
designs. Some of these linguistic choices have made, and still make it feasible to more conveniently experiment with new algorithms and frameworks
for analyzing system models. In this paper we will attempt to give convincing arguments for why we believe it is time for the formal methods
community to shift some of its attention towards the analysis of programs written in modern programming languages. In keeping with this philosophy
we have developed verification and testing environment for Java, called Java PathFinder (JPF), which integrates model checking, program analysis
and testing. Part of this work has consisted of building a new Java Virtual Machine that interprets Java byte code. JPF uses state compression to
handle big states, and partial order and symmetry reduction, slicing, abstraction, and runtime analysis techniques to reduce the state space.

Index Terms—Model checking, Abstraction, Runtime Analysis, static analysis, Java Path Finder, Linear time temporal logic (LTL).

—————————— � ——————————

1 INTRODUCTION

In a few cases, modeling languages have been designed to
resemble programming languages, although the focus has
been on protocol designs. Some of these linguistic choices
have made, and still make it feasible to more conveniently
experiment with new algorithms and frameworks for
analyzing system models. For example, a logic based language
is well suited for rewriting, and a rule based guarded
command notation is convenient for a model checker.
Continued research in special languages is important since
this research investigates semantically clean language
concepts and will impact future language designs and analysis
algorithms. Next important step for the formal methods
subgroup of the software engineering community could be to
focus some of its attention on real programs written in modern
programming languages. Studying programming languages
somehow will result in some new challenges that will drive
the research in new directions as described in the first part of
the paper. In the second part of the paper, we describe our
own effort to follow this vision by presenting the development
of verification, analysis and testing environment for Java,
called Java PathFinder (JPF). This environment combines
model checking techniques with techniques for dealing with
large or infinite state spaces. These techniques include static
analysis for supporting partial order reduction of the set of
transitions to be explored by the model checker, predicate
abstraction for abstracting the state space, and runtime
analysis such as race condition detection and lock order
analysis to pinpoint potentially problematic code fragments.
Part of this work has consisted of building a new Java Virtual
Machine (JVMJPF) that interprets Java byte code. JVMJPF is
called from the model checking engine to interpret byte code
generated by a Java compiler. It is an attractive idea to develop
a verification environment for Java for three reasons. First,
Java is a modern language featuring important concepts such
as object-orientation and multi-threading within one language.

Languages such as C and C++, for example, do not support
multi-threading as part of their core. Second, Java is simple,
for example compared to C++. Third, Java is compiled into
byte code, and hence, the analysis can be done at the byte code

level. This implies that such a tool can be applied to any
language that can be translated into byte code'. Byte code
furthermore seems to be a convenient breakdown of Java into

easily manageable byte code instructions; and this seems to
have eased the construction of our analysis tool. JPF is the
second generation of a Java model checker developed at
NASA Ames. The first generation of JPF (JPFI) was a translator
from Java to the Promela language of the Spin model checker.

2 CODE ANALYSIS

It is often argued that verification technologies should be
applied to designs rather than to programs since catching
errors early at the design level will reduce maintenance costs
later on. We do agree that catching errors early is crucial. State
of the art formal methods also most naturally lend themselves
to designs, simply due to the fact that designs have less
complexity, which make formal analysis more feasible and
practical. Hence, design verification is a very important
research topic, with the most recent popular subject being
analysis of statecharts, such as for example found in UML [1].
However, we want to argue that the formal methods
community should put some of its attention on programs for a
number of reasons that we will describe below.
First of all, programs often contain fatal errors in spite of the
existence of careful designs. Many deadlocks and critical
section violations for example are introduced at a level of
detail which designs typically do not deal with, if formal
designs are made at all. This was for example demonstrated in
the analysis of NASA's Remote Agent spacecraft control

system written in the LISP programming language, and
analyzed using the Spin model checker [2]. Here several
classical multi-threading errors were found that were not
really design errors, but rather programming mistakes such as

forgetting to enclose code in critical sections. One of the
missing critical section errors found using Spin was later
introduced in a sibling module, and caused a real deadlock

during flight in space, 60,000 miles from earth [18]. Another
way of describing the relationship between design and code is
to distinguish between two kinds of errors. On the one hand
there are errors caused by flaws in underlying complex
algorithms. Examples of complex algorithms for parallel

systems are communication protocols. The other kind of errors
are more simple minded concurrency programming errors,
such as forgetting to put code in a critical section or causing
deadlocks. This kind of errors will typically not be caught in a
design, and they are a real hazard, in particular in safety
critical systems. Complex algorithms should probably be
analyzed at the design level, although there is no reason such
designs cannot be expressed in a modern programming

language.
Second, one can argue that since modern programming
languages are the result of decades of research, they are the
result of good language design principles. Hence, they may be
good design modeling languages. This is to some extent
already an applied idea within UML where statechart
transitions (between control states) can be annotated with
code fragments in your favorite programming language. In

fact, the distinction between design and program gets blurred
since final code may get generated from the UML designs. An
additional observation is that some program development
methods suggest a prototyping approach where the system is
incrementally constructed using a real programming
language, rather than being derived from a pre constructed
design. This was for example the case with the Remote Agent
mentioned above. Furthermore, any research result on

programming languages can benefit design verification since
designs typically are less complex.
A third and very different kind of argument for studying
verification of real programs is that such research will force
the community to deal with very hard problems, and this may

drive the research into new areas. We believe for example that
it could be advantageous for formal methods to be combined
with other research fields that traditionally have been more

focused on programs, such as program analysis and testing.
Such techniques are typically less complete, but they often
scale better. Objective of formal methods is not only to prove
programs correct, but also to debug programs and locate
errors. With such a more limited ambition, one may be able to

apply techniques which are less complete and based on
heuristics, such as certain testing techniques.
Fourth, studying formal methods for programming languages

may furthermore have some derived advantages for the
formal methods community due to the fact that there is a
tendency to standardize programming languages. This may
make it feasible to compare and integrate different tools
working on the same language - or on “clean subsets” of these

languages. As mentioned above, it would be very useful to
study the relationship between formal methods and other

areas such as program analysis and testing techniques.
Working at the level of programs will make it possible to
better interact with these communities. A final derived
advantage will be the many orders of magnitude increased

access to real examples and users who may want to
experiment with the techniques produced. This may have a
very important impact on driving the research towards

scalable solutions.
In general, it is our hope that formal methods will play a role
for everyday software developers. By focusing on real
programming languages community will be able to interact
more intensively on solving common problems. Furthermore,

the technology transfer problem so often mentioned may
vanish, and instead be replaced by a technology demand.

3 MODEL CHECKING JAVA PROGRAMS

3.1 Complexity of Language Constructs
Input languages for model checkers are often kept relatively

simple to allow efficient processing during model checking. Of
course there are exceptions to this, for example Promela, the
input notation of Spin [3], more resembles a programming
language than a modeling language. General programming
languages, however, contain many new features almost never

seen in model checking input languages, for example, classes,
dynamic memory allocation, exceptions, floating point
numbers, method calls, etc. How will these be treated? Three

solutions are currently being pursued by different groups
trying to model check Java: one can translate the new features
to existing ones, one can create a model checker that can
handle these new features, or, one can use a combination of
translation and a new/extended model checker.

3.1.1 Translation
The first version of JPF, as well as the JCAT system [4], was
based on a translation from Java to Promela. Although both
these systems were successful in model checking some
interesting Java programs [5], such source-to-source
translations suffer from two serious drawbacks:
Language Coverage — each language feature of the source
language must have a corresponding feature in the destination

language. This is not true of Java and Promela, since Promela
for example, does not support floating point numbers.
Source Required — In order to translate one source to another,
the original source is required, which is often not the case for
Java, since only the byte codes are available — for example in
the case of the libraries and code loaded over the WWW. For
Java, the requirement that the source exists can be overcome
by translating directly from byte codes. This is the approach

used by the BANDERA tool [6], where byte codes, after some
manipulation, are translated to either Promela or the SMV
model checker’s input notation. The Stanford Java model
checker also uses this approach, by translating byte codes to
the SAL intermediate language for model checking. Their SAL
model checker is however specifically developed for the
purpose of checking programs with dynamic data-structures

and hence could be argued to fall into the custom-made model
checker category below.

3.1.2 Custom-Made Model Checker
In order to overcome the language coverage problem it is
obvious that either the current model checkers need to be

extended or a new custom-made model checker must be
developed. Some work is being done on extending the Spin
model checker to handle dynamic memory allocation [7], but

again in terms of Java this only covers a part of the language
and much more is required before full Java language coverage
will be achieved this way. With JPF we took the other route,
we developed our own custom-made model checker that can
execute all the byte code instructions, and hence allow the

whole of Java to be model checked. The model checker
consists of our own Java Virtual Machine (JVMJPF) that
executes the byte codes and a search component that guides
the execution. Note that the model checker is therefore an
explicit state model checker, similar to Spin, rather than a
symbolic one based on Binary Decision Diagrams such as
SMV. Also, we decided that a depth-first traversal with
backtracking would be most appropriate for checking

temporal liveness properties (breadth-first liveness checking is
inefficient due to the problems in detecting cycles). A nice
side-effect of developing our own model checker was the ease
with which we are able to extend the model checker with
interesting new search algorithms—this would, in general, not
have been easy to achieve with existing model checkers
(especially not with Spin). A major design decision for JPF was
to make it as modular and understandable to others as

possible, but we sacrificed speed in the process—Spin is at
least an order of magnitude faster than JPF. We believe this is
a price worth paying in the long run. JPF is written in Java and
uses the JavaClass package2 to manipulate class files.

3.2.1 Language and Properties Supported
The JVMJPF supports all Java byte codes, hence any program
written in pure Java can be analyzed. Unfortunately, not all
Java programs consist of pure Java code - one often finds that
certain methods are defined as being native to the operating
system. When a Java program calls methods that have no
corresponding byte codes, then JPF cannot determine what the
state of these code fragments will be and hence cannot handle
programs that, for example, access the file system (user-
defined class-loaders, file I/O operations, etc.), or
communicate over a network, contains GUI code, etc.
Fortunately, many native methods do not have side-effects
and hence simple wrapper-methods can be written that
translate the inputs and outputs to the native method, which
then allow the original method to be called and all state
changes to happen after returning from the call. However, if
the native method itself causes an error, JPF will not be able to
detect it, unless its output also causes an error in the Java code.
Furthermore, JPF can only handle closed systems, i.e. a system
and the environment it will execute in. This however is also
the case in testing, where a test-harness is required to close a
system, and is not considered a drawback of the approach.
The current model checker can check for deadlocks, invariants
and user defined assertions in the code, as well as Linear Time

Temporal Logic (LTL) properties. In fact JPF supports all
properties expressible in the BANDERA tool, the interested
reader is referred to for more detail.

3.2 Complex States
In order to ensure termination during explicit state model
checking one must know when a state is revisited. It is

common for a hash table to be used to store states, which
means an efficient hash function is required as well as fast
state comparison. The Verisoft system [8] was developed to

model check software, but the design premise was that the
state of a software system is too complex to be encoded
efficiently, hence Verisoft does not store any of the states it

visits (Verisoft limits the depth of the search to get around the
termination problem mentioned above). Since the Verisoft

system executes the actual code (C/C++), and has little control
over the execution, except for some user-defined “hooks” into
communication statements, it is almost impossible to encode

the system state efficiently. This insight also convinced us that
we cannot tie our model checking algorithm in with an
existing JVM, which is in general highly optimized for speed,
but will not allow the memory to be encoded easily. Design
philosophy was to keep the states of the JVM in a complex

data-structure, but one that would allow us to encode the
states in an efficient fashion in order to determine if we have
visited states before. Specifically, each state consists of three

components: information for each thread in the Java program,
the static variables (in classes) and the dynamic variables (in
objects) in the system. The information for each thread consists
of a stack of frames, one for each method called, whereas the
static and dynamic information consists of information about

the locks for the classes/objects and the fields in the
classes/objects. Each of the components mentioned above is a
Java data-structure. In early stages of JPF development we did

store these structures directly in a hash table, but with terrible
results in terms of memory and speed: 512Mb would be

exhausted after only storing _50000 states, and _20 states could
be evaluated each second. The solution adopted to make the
storing of states more efficient, was a generalization of the

Collapse method from Spin, each component of the JVM state
is stored separately in a table, and the index at which the
component is stored is then used to represent the component.

More specifically, each component (for example the fields in a
class/object) is inserted in a table for that component; if the

specific component is already in the table its index is returned,
and if it is unique it is stored at the next open slot and that
index is returned. This has the effect of encoding a large

structure into no more than an integer3 (see Figure 1).
Collapsing states in this fashion allows fast state comparisons,
since only the indexes need to be compared and not the
structures themselves. The philosophy behind the collapsing
scheme is that although many states can be visited by a

program the underlying components of many of these states
will be the same. A somewhat trivial example of this is when a
statement updates a local variable within a method. The only

part of the system that changes is the frame representing the
method; all the other parts of the system state are unaffected
and will collapse to the same indexes. This actually alludes to
the other optimization we added: only update the part of the

system that changes, i.e., keep the indexes calculated for the
previous state the same, only calculate the one that changed
(to date we have only done this optimization in some parts of
the system). After making these changes the system could

store millions of states in 512Mb and could evaluate between
500 and 1500 states per second depending on the size of the
state.

Figure 1. Collapsing and Recreating the JVM state

It was however clear from profiling the system execution that
there was still one major source of inefficiency - the collapsing

of states was only used for the states stored in the hash table,
but in order to allow backtracking the un-collapsed states are
stored in a stack. More specifically, whenever a new state is

generated a copy of this state is made and put on the stack,
during backtracking this state is removed again and execution
continues. The Java “clone” operation is used to make copies
of states, but this operation is notoriously slow since our states
are represented by such a complex data-structure. Memory

consumption was also high due to the complexity of each
state, and we could seldom analyze a system with more than
10000 states in a depth-first path. A very simple, and above all
novel solution, however presented itself: use the reverse of the
collapse operation to recreate a state from its collapsed
description (see Figure 1). We could now use the collapsed
state description in both the hash table and the stack, and
during backtracking the collapsed state is uncompressed by

reversing the lookup in the tables (i.e. use the index to retrieve
the original object from the table). This saves time since
recreating the state from its collapsed form is faster than
copying the state, and also saves memory since we now only
create one collapsed copy of the state, which is stored in the
hash table, and we keep a reference to this state in a stack
entry. Lastly, as before, since only part of the state changes
during each transition we can also just un collapse the parts

that changed during backtracking. These last changes
improved memory usage 4 fold and the model checker can
now evaluate between 6000 and 10000 states per second
depending on the size of the state.

3.3 Curbing The State Space Explosion
Maybe the most challenging part of model checking is
reducing the size of the state space to be explored to
something that your tool can handle. Since designs often
contain less detail than implementations, model checking is
often thought of as a technique that is best applied to designs,

rather than implementations. We believe that applying model
checking by itself to programs will not scale to programs of
much more than 10000 lines. The avenue we are pursuing is to
augment model checking with information gathered from

other techniques in order to handle large programs.
Specifically, we are investigating the use of symmetry
reductions, abstract interpretation, static analysis and runtime

analysis to allow more efficient model checking of Java
programs. Figure 2 illustrates the architecture of JPF and its
companion tools (abstraction tool, static analyzer and runtime
analyzer) that will be described in detail below.

3.3.1 Symmetry Reductions
The main idea behind symmetry reductions [9] is that
symmetries induce an equivalence relation on states of the

system, and while performing analysis of the state space (for
example during model checking) one can discard a state if an
equivalent state has already been explored. Typically a

canonicalization function is used to map each state into a
unique representative of the equivalence class. Software
programs can in general induce a great many symmetries, but
here we will focus on a number of symmetry related problems
found when analyzing Java programs: class loading and two

forms of symmetry in the heap (dynamic area).

Figure 2. The JPF Tool Architecture. Dotted lines indicate iterative
analysis.

The problem we are trying to avoid is the analysis of states
that are equivalent to previously analyzed states. Java
programs have dynamic behavior and one cannot predict
which classes will be loaded, objects will be instantiated, or

even in which order these will occur. This lack of order would
seem to suggest an appropriate representation for the static
area (where static variables for each class are stored) and the
dynamic area (where objects are allocated) should be as sets.
Comparing sets is however too time consuming, but an
obvious ordering can be used, namely, the order in which
classes are loaded or objects created. This however means that
states will be considered to be different, if their only difference

is the order of class loading (similarly if the same objects are
placed in different locations in the dynamic area). What is
required is to ensure that the static area and dynamic area
have a canonical representation regardless of which

interleaving of transitions is being executed. A
canonicalization function for the static area is simple to define,
since we can order the locations where the static variables of a
class will be in the static area by ordering the class names. For

each class loader in Java the class names must be unique, and
since we do not consider the case of more than one class
loader being used a simple mapping of class names to

positions in the static area is enough. For example, if class A is
loaded before class B in one interleaving then the static
variables for class A will be stored at position 0 in the static
area, and this mapping A → 0 will be remembered, when class
B is loaded the mapping B → 1 will be remembered. After

backtracking let us assume class B is now loaded before A,
then the mapping for B will be recalled and B’s static variables
will be loaded at position 1 even though position 0 is available
(class A’s static variables will be loaded there).
Unfortunately, a similar approach with object allocation in the
dynamic area is not sufficient since there can be many objects
instantiated from the same class. One can however identify
each object allocation in a Java program by uniquely

identifying each “NEW” byte code4. This is not yet sufficient
to define a mapping, since the same “NEW” can be executed
more than once, for example when an allocation is in a loop.
An occurrence number that is incremented each time the new
is executed and decremented whenever the instruction is
backtracked over, can then be used to identify each allocation.
Although the combination of the new-identifier and an
occurrence number will distinguish many cases where there is

symmetry, it does not resolve all cases. For example if the
same allocation code can be executed from two different
threads the symmetry reduction will be missed and equivalent
states will be considered different. A thread reference can be
added to distinguish this case. Clearly there is a trade-off
between the precision of the canonicalization function and the
time taken to calculate it; we chose to rely only on the new-
identifier and the occurrence number in our current system.

3.3.2 Abstraction
Recently, the use of abstraction algorithms based on the theory
of abstract interpretation, has received much attention in the
model checking community. The basic idea underlying all of
these is that the user specifies an abstraction function for

certain parts of the data-domain of a system. The model
checking system then, by using decision procedures, either
automatically generates, on-the fly during model checking, a
state-graph over the abstract data or automatically generates
an abstract system, that manipulates the abstract data, which
can then be model checked. The trade-off between the two
techniques is that the generation of the state-graph can be
more precise, but at the price of calling the decision

procedures throughout the model checking process, whereas
the generation of the abstract system requires the decision
procedures to be called proportionally to the size of the
program. It has been our experience that abstractions are often
defined over small parts of the program, within one class or
over a small group of classes, hence we favor the generation of
abstract programs, rather than the on-the-fly generation of
abstract state-graphs. Also, it is unclear whether the abstract

state-graph approach will scale to systems with more than a
few thousand states, due to the time overhead incurred by
calling the decision procedures. Specifically we have
developed an abstraction tool for Java that takes as input a

Java program annotated with user-defined predicates and, by
using the Stanford Validity Checker (SVC), generates another
Java program that operates on the abstract predicates. For

example, if a program contains the statement x++ and we are
interested in abstracting over the predicate x==0, written as
Abstract.addBoolean ("B", x == 0), then the increment
statement will be abstracted to the code: “if (B) then B = false
else B = Verify.randomBool ()” where nondeterministic choice

is indicated by the randomBool () method that gets trapped by
the model checker. The BANDERA tool uses similar
techniques to abstract the data-domains of, for example, an
integer variable to work over the abstract domains positive,
negative and zero (the so-called sign abstraction), by using the
PVS model checker. The novelty of our approach lies in the
fact that we can abstract predicates over more than one class:
for example, we can specify a predicate Abstract.addBoolean

("xGTy", A.x > B.y) if class A has a field x and class B has a
field y. The abstracted code allows for many instantiations of
objects of class A and B to be handled correctly. Although our
Java abstraction tool is still under development we have had
very encouraging results. For example we can, in a matter of
seconds, abstract the omnipresent infinite-state Bakery
algorithm written in Java to one that is finite-state and can be
checked exhaustively. Abstractions for model checking often

over-approximate the behavior of the system, in other words,
the abstracted system has as a subset the behaviors of the
original system. Since the properties that are typically checked
are universally quantified over all paths, over-approximations
preserve correctness. If a property holds in the abstracted
system it is also true of the original system. Unfortunately,
when it comes to model checking programs, or any other type
of system for that matter, it is often the case that we are

interested in finding errors, not showing correctness. And here
lies a problem:-
Over-approximations do not preserve errors, i.e. errors in the
abstract system might be due to new behaviors that were
added and are not present in the original system. Eliminating

these spurious errors is an active research area. We adopted a
pragmatic approach to this problem that seems to work very
well in practice. The basic idea is as follows: Any path in the

abstracted program that is free of nondeterministic choices is
also a path of the original program; hence if an error occurs on
such a “choose-free” path then it is not spurious. JPF has a
special mode in which it searches for errors only on paths that
are choose-free — since nondeterminism in JPF is trapped by

recognizing special method calls; it is easy to truncate a search
whenever such a call occurs. Of course, if no error is found in
this special mode, then the result is inconclusive since an error

might exist, but the abstraction is not adequate to find the
error in the choose-free mode. The next step is now to look for
errors that may contain nondeterministic choices, if such an
error exists, we can run this path in a simulation mode on the
original program (there is a 1-to-1 mapping of code from the

abstract to the original code) and if it diverges, i.e. the abstract
path says statement s1 should be executed but the concrete

program says s2 should be executed, then we can use the last
decision point taken before divergence to refine the
abstraction. If the path does not diverge we can also be sure
that the error is not spurious. Note that we do not need to

symbolically execute the abstract path on the concrete
program, since the Java programs we check are by definition
closed systems, i.e. they take no unknown input, and also each

program has a single initial state.

3.3.3 Static Analysis
Static analysis of programs consists of analyzing programs
without executing them. In general, the analysis is performed
without making assumptions about the inputs of the program.

The analysis results are therefore valid for any set of inputs. A
wide variety of techniques fall under the static analysis

umbrella; e.g., data flow analysis, set and constraint
resolution, abstract interpretation, and theorem proving can
all be applied to static analysis problems (with various degrees

of success). They all derive some properties about a program.
These properties are then used in slicing, code optimization,
code parallelization, abstract debugging, code verification,
code understanding, or code re-engineering for examples. The
main aim of static analysis lies in its potential for reducing the

size of the state space generated by a program. Therefore,
focus is on three static analysis problems that can result in
state space reduction: static slicing, partial evaluation, and

partial order computation. Static slicing takes a program and a
slicing criterion and generates a smaller program that is
functionally equivalent to the original program with regard to
the criterion. Partial evaluation propagates constant values
and simplifies expressions in the process. Partial order

computation focuses on identifying statements that can be
safely interleaved with any statement on a different thread.
The combined use of these analyses results in smaller state

spaces, and therefore, helps reduce the state explosion
problem. However, they do it in different manners. On the one

hand, static slicing and partial evaluation generate a
(functionally equivalent) smaller program that results in a
smaller state space as shown in Figure 3. Black states indicate

states that directly affect the slicing criterion (e.g., because
they modify a variable involved in a property we want to
check). After slicing, only the states affecting the slicing

criterion remain in the state space. On the other hand, partial
order computation does not change the size of the program,

but its results can be used to further reduce the state space by
eliminating unnecessary interleavings. Static slicing and its
application in model checking is discussed ahead also partial

order computation approach in brief.

Figure 3 Reduction of programs using static slicing

One approach to reducing the size of programs, and therefore
the size of the state space to be model checked, is to eliminate
statements that are not relevant to the property one wants to
verify. In static analysis, this process is known as program
slicing. It has been studied quite extensively and the interested
reader can find a detailed survey on slicing in. In general, a
program slice is defined by the parts of a program that may
affect (or be affected by) a slicing criterion. Typically a slicing
criterion consists of a set of program points of interest. The
sliced program is smaller than the original program and is
functionally equivalent with respect to the slicing criterion. In
this paper, we focus on works that use slicing as a program
reduction tool for model checking as shown in. When slicing
for model checking, criteria are often related to the properties
that one wants to check, e.g., for a given property P, the slicing
criterion is the set of program points affecting the values of the
variables present in P. Therefore, every statement affecting the
slicing criterion should be present in the slice (or sliced
program); otherwise, the resulting program is not functionally
equivalent to the original program. If such a statement was
missing from the slice, it could result in a situation where the
model checker states that a property holds on the sliced
program even though it does not hold on the original
program. This type of slicing is called closure slicing: a closure
slice of a program P with respect to program point p and
variable x consists of all statements that may affect the value of
x at p. JPF uses the slicing tool of the BANDERA toolset which
implements the work of Hatcliff et al. on static slicing of
concurrent Java programs. Their technique consists of

computing a set of program dependencies affecting the slicing
criteria. These dependencies include the traditional
dependencies (data, control and divergence) for sequential
programs as well as their counterparts (interference,
synchronization and ready dependencies) for concurrent
programs. Informally, interference dependencies represent
cases where the definition of shared variables can reach across
threads. Synchronization dependence focuses on the use of

synchronize statements; it basically states that if a variable is
defined at a node inside some critical region, then the locking
associated with that region must be preserved (i.e., the inner-
most enclosing synchronize statement must be present in the
slice). Ready dependence states that a statement n is
dependent on a statement m if m’s failure to complete (e.g.,
because a wait or notify never occurs) can block the thread
containing n. In BANDERA, slicing is not performed on the

Java source code, but on its (3-address code) representation
called Jimple (Jimple is an intermediate representation for Java
used in the Soot compiler developed at McGill University). In
BANDERA, Jimple code is then translated into Promela or

SMV code and then model checked. In order to use slicing and
abstraction iteratively, and, since abstraction works on the
source code level, we have to convert the sliced Jimple

program back to Java source code using annotations that
describe the original Java program. This approach has
benefited JPF in several ways. First, using BANDERA, we can
extract slicing criteria (i.e., program points) automatically from
the properties verified by JPF. Second, BANDERA also

provides support for partial symbolic evaluation, which yields
smaller state spaces.
Third, we can re-use the dependence analysis performed by
BANDERA to compute partial order information. Within JPF,
static analysis is also used to determine which Java statements
in a thread are independent of statements in other threads that
can execute concurrently. This information is then used to
guide the partial-order reductions built into JPF. Partial-order

reduction techniques ensure that only one interleaving of
independent statements is executed within the model checker.
It is well established from experience with the Spin model
checker that partial-order reductions achieve an enormous
state-space reduction in almost all cases. We have had similar
experience with JPF, where switching on partial-order
reductions caused model checking runs that ran for hours to
finish within minutes. We believe model checking of (Java)

programs will not be tractable in general if partial-order
reductions are not supported by the model checker and in
order to calculate the independence relations required to
implement the reductions, static analysis is required.

3.3.4 Runtime Analysis
Runtime analysis is conceptually based on the idea of
executing a program once, and observing the generated

execution trace to extract various kinds of information. This
information can then be used to predict whether other
different execution traces may violate some properties of

interest (in addition of course to demonstrating whether the
generated trace violates such properties). The important
observation here is that the generated execution trace itself

does not have to violate these properties in order for their
potential violation in other traces to be detected. Runtime

analysis algorithms typically will not guarantee that errors are
found since they after all work on a single arbitrary trace.
They also may yield false positives in the sense that analysis

results indicate warnings rather than hard error messages.
What is attractive about such algorithms is, however, that they
scale very well, and that they often catch the problems they
are designed to catch. That is, the randomness in the choice of
run does not seem to imply a similar randomness in the

analysis results. In practice runtime analysis algorithms will
not store the entire execution trace, but will maintain some
selected information about the past, and either do analysis of

this information on-the-fly, or after program termination. An
example is the data race detection algorithm Eraser [10]
developed at Compaq, and implemented for C++ in the Visual
Threads tool (Harrow, 2000). Another example is a locking

order analysis called Lock-Tree which we have developed.
Both these algorithms have been implemented in JPF to work
on Java programs. Below we describe these two algorithms,
and how they can be run stand-alone in JPF to identify data

race and deadlock potentials in Java programs. Then we
describe how these algorithms are used to focus the model
checker on part of the state space that contains these potential

data race and deadlock problems. Note that runtime analysis
is different from runtime monitoring, as supported in systems
such as Temporal Rover and Mac, where certain user-specified
properties are monitored during execution. We are, however,
currently also exploring the integration of this kind of

technology with runtime analysis.

Data Race Detection
The Eraser algorithm detects data race potentials. A concrete
data race occurs when two concurrent threads simultaneously
access a shared variable and when at least one access is a
write; hence the threads use no explicit mechanism to prevent
the accesses from being simultaneous. The program is
guaranteed data race free if for every variable there is a

nonempty set of locks that all threads own when they access
the variable. The Eraser algorithm can detect that a data race
on a variable is possible (potential) even though no concrete
data races have occurred, by observing and remembering
which locks are active whenever it is accessed. The algorithm
works by maintaining for each variable x a set set(x) of those
locks active when threads access the variable. Furthermore, for
each thread t a set (t) is maintained of those locks taken by the
thread at any time. Whenever a thread t accesses the variable
x, the set set(x) is refined to the intersection between set(x) and
set (t) (set(x):= set(x) \ set (t)), although the first access just
assigns set (t) to set(x). Our algorithm differs from [10] since
there the initial value of set(x) is the set of all locks in the
program. In a Java program objects (and thereby locks) are
generated dynamically, hence the set of all locks cannot be
pre-calculated. A race condition may be possible if set(x) ever
becomes empty. First of all, shared variables are often
initialized without the initializing thread holding any locks.
The above algorithm will yield a warning in this case,
although this situation is safe. Another situation where the
above algorithm yields unnecessary warnings is if a thread

creates an object, where after several other threads read the
object’s variables (but no-one is writing after the initialization).
Figure 4 illustrates this state machine. The variable starts in
the VIRGIN state. Upon the first write access to the variable,
the EXCLUSIVE state is entered. The lock set of the variable is
not refined at this point. This allows for initialization without
locks. Upon a read access by another thread, the SHARED
state is entered, now with the lock refinement switched on, but

without yielding warnings in case the lock set goes empty.
This allows for multiple readers (and not writers) after the
initialization phase. Finally, if a new thread writes to the
variable, the SHARED-MODIFIED state is entered, and now
lock refinements are followed by warnings if the lock set
becomes empty.

Figure 4. The Eraser algorithm associates a state machine with each
variable x.

The state machine describes the Eraser analysis performed
upon access by any thread t. The pen heads signify that lock
set refinement is turned on. The p sign signifies that warnings
are issued if the lock set becomes empty.

The generic Eraser algorithm has been implemented to work
on Java by modifying the JVMJPF to perform this analysis
when the eraser option is switched on. Each thread is
associated with a lock set (a Java object representing a set), and
each variable (field) in each object is associated with an
automata of the type shown in Figure 4 (a Java object
representing the automata and lock set). The JVMJPF accesses
the byte codes via the JavaClass package, which for each byte
code delivers a Java object of a class specific for that byte code.
The JVMJPF extends this class with an execute method, which
is called by the verification engine, and which represents the
semantics of the byte code. The runtime analysis is obtained
by instrumenting the execute methods of selected byte codes,
such as the GETFIELD and PUTFIELD byte codes that read
and write object fields, the static field access byte codes
GETSTATIC and PUTSTATIC, and all array accessing byte
codes such as for example IALOAD and IASTORE. The byte
codes MONITORENTER and MONITOREXIT, generated from
explicit synchronized statements, are instrumented with
updates of the lock sets of the accessing threads to record
which locks are owned by the threads at any time; just as are
the byte codes INVOKEVIRTUAL and INVOKESTATIC for
calling synchronized methods. The INVOKEVIRTUAL byte
code is also instrumented to deal with the built-in wait
method, which causes the calling thread to release the
lock on the object the method is called on. Instrumentations
are furthermore made of byte codes like RETURN for
returning from synchronized methods, and ATRHOW that
may cause exceptions to be thrown within synchronized
contexts.

Deadlock Detection
A classical deadlock situation can occur where two threads
share two locks and attempt to take the locks in different
order. An algorithm that detects such lock cycles must in
addition take into account that a third lock may protect
against a deadlock like the one above, if this lock is taken as
the first thing by both threads, before any of the other two
locks are taken. In this situation no warnings should be

emitted. Such a protecting third lock is called a gate lock. The
algorithm for detecting this situation is based on the idea of
recording the locking pattern for each thread during runtime
as a lock tree, and then, when the program is terminated,

comparing the trees for each pair of threads. The lock tree that
is recorded for a thread represents the nested pattern in which
locks are taken by the thread. As an artificial example,

consider the code fragments of two threads in Figure 5. Each
thread takes four locks L1, L2, L3 and L4 in a certain pattern.
For example, the first thread takes L1; then L3; then L2; then it
releases L2; then takes L4; then releases L4; then releases L3;
then releases L1; then takes L4; etc.

Figure 5 Synchronization behavior of two threads

This pattern can be observed, and recorded in a finite tree of
locks for each thread, as shown in Figure 6, by just running the

program. As can be seen from the trees, a deadlock is potential
because thread 1 in its left branch locks L3 (node identified
with 2) and then L4 (4), while thread 2 in its right branch takes
these locks in the opposite order (11, 12). There are
furthermore two additional ordering problems between L2
and L3, one in the two left branches (2, 3 and 9, 10), and one in
the two right branches (6, 7 and 12, 13). However, neither of
these pose a deadlock problem since they are protected by the

gate locks L1 (1, 8) respectively L4 (5, 11). Hence, one warning
should be issued.

Figure 6. Lock trees corresponding to threads in Figure 5.

When being built, each tree has at any time a current node,
where the path from the root (identifying the thread) to that
node represents the lock nesting at this point in the execution.
The lock operation creates a new child of the current node if
the new lock has not previously been taken (is not in the path
above). The unlock operation just backs up the tree if the lock
really is released, and not owned by the thread in some other
way. When the program terminates, the analysis of the lock

trees is initiated. Each pair of trees (t1; t2) are compared, and
for every node n in t1 it is checked that no node below n is
above any occurrence of n in t2. In order to avoid issuing

warnings when a gate lock prevents a deadlock, occurrences
of n in t2 are marked after being examined, and nodes below
marked nodes are not considered until the marks are removed
when the analysis backtracks from the corresponding node in

t1. The following byte codes will activate calls of the lock and
unlock operations in these tree objects for the relevant threads:
MONITORENTER and MONITOREXIT for entering and

exiting monitors, INVOKEVIRTUAL and INVOKESTATIC for
calling synchronized methods or the built-in wait method of
the Java threading library, byte codes like RETURN for
returning from synchronized methods, and ATRHOW that
may cause exceptions to be thrown within synchronized

contexts.

4 USING RUNTIME ANALYSIS TO GUIDE MODEL
CHECKING

The runtime analysis algorithms described in the previous two
sections can provide useful information to a programmer as
standalone tools. In this section we will describe how runtime
analysis furthermore can be used to guide a model checker.
The basic idea is to run the program in simulation mode first,
using the JVMJPF simulator, with all the runtime analysis
options turned on, thereby obtaining a set of warnings about
data races and lock order conflicts. The threads causing the
warnings are stored in a race window. When the simulation is
terminated, forced or according to the program logic, the
resulting race window (in fact an extension of it, see below)
will then be fed into the model checker, which will now search
the state space, but now only focusing its attention on the
threads in the window. That is, the model checker only
schedules threads that are in the window. However, before the
model checker is applied, the race window is extended to
include threads that create or otherwise influence the threads
in the original window. The purpose is to obtain a small self-
contained sub-system containing the race window, which can
be meaningfully model checked. The extended window can be
thought of as a dynamic slice of the program. The extension is
calculated on the basis of a dependency graph, created by a
dependency analysis also performed during the pre-
simulation. More specifically, the dependency graph is a
mapping from threads t to triples (α, ρ, ω), where α is the
ancestor thread that spawned t, ρ is the set of objects that t
reads from, and ω is the set of objects that t writes to. The
window extension operation performs a fix-point calculation
by creating the set of all threads reachable from the original
window by repeatedly including threads that have spawned
threads in the window, and by including threads that write to
objects that are read by threads in the window. The following
byte codes are instrumented to operate on the dependency
graph: INVOKEVIRTUAL for invoking the start method on a
thread; and PUTFIELD, GETFIELD, PUTSTATIC, GETSTATIC
for accessing variables.

5 CONCLUSION

The second part of the paper described how we applied this

philosophy to the analysis of Java programs. Specifically, we
have shown that model checking can be applied to Java
programs, without being hampered by the perceived problems
often cited as reasons for why model checking source code
will not work. In the process we have shown that augmenting

model checking with symmetry reductions, abstract
interpretation, static analysis and runtime analysis can lead to
the efficient analysis of complex (Java) software. Although the

combination of some of these techniques is not new, to the best
of our knowledge, our use of symmetry reductions for class
loading and heap allocation, the semi-automatic predicate
abstraction across different classes, the use of static analysis to
support partial-order reductions and the use of runtime
analysis to support model checking are all novel contributions.
Although it is hard to quantify the exact size of program that
JPF can currently handle – “small” programs might have

“large” state-spaces A nice side-effect of developing our own
model checker was the ease with which we are able to extend
the. model checker with interesting new search algorithms-this
would, in general, not have been easy to achieve with existing
model checkers (especially not with Spin). A major design

decision for JPF was to make it as modular and
understandable to others as possible, but we sacrificed speed
in the process - Spin is at least an order of magnitude faster

than JPF.

REFERENCES

[1] Booch, G., J. Rumbaugh, and I. Jacobson: 1999, The Unified Modeling

Language User Guide. Addison-Wesley.

[2] Havelund, K., M. Lowry, and J. Penix: 1998, ‘Formal Analysis of a

Space Craft Controller using SPIN’. In: Proceedings of the 4th SPIN

workshop, Paris, France.

[3] Holzmann, G.: 1997b, ‘The Model Checker Spin’. IEEE Trans. on

Software Engineering

[4] Demartini, C., R. Iosif, and R. Sisto: 1999a, ‘A Deadlock Detection Tool

for Concurrent Java Programs’. Software Practice and Experience

[5] Havelund, K. and J. Skakkebaek: 1999, ‘Practical Application of Model

Checking in Software Verification’. In: Proceedings of the 6th Workshop on

the SPIN Verification System,

[6] Corbett, J. C., M. B. Dwyer, J. Hatcliff, and Robby: 2000b, ‘A Language

Framework For Expressing Checkable Properties of Dynamic Software’.

[7] Visser,W.,K. Havelund, and J. Penix: 1999, ‘Adding Active Objects to

SPIN’.

[8] Godefroid, P.: 1997, ‘Model Checking for Programming Languages

using VeriSoft’. In: Proceedings

of the 24th ACM Symposium on Principles of Programming Languages.

[9] Clarke, E., E. Emerson, S. Jha, and A. Sistla: 1998, ‘Symmetry

Reductions in Model Checking’. In: Proceedings of the 10th International

Conference for Computer-Aided Verification.

[10] Savage, S., M. Burrows, G. Nelson, and P. Sobalvarro: 1997, ‘Eraser: A

Dynamic Data Race Detector for Multithreaded Programs’. ACM

Transactions on Computer Systems

