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Abstract— In a few cases, modeling languages have been designed to resemble programming languages, although the focus has been on protocol 
designs. Some of these linguistic choices have made, and still make it feasible to more conveniently experiment with new algorithms and frameworks 
for analyzing system models. In this paper we will attempt to give convincing arguments for why we believe it is time for the formal methods 
community to shift some of its attention towards the analysis of programs written in modern programming languages. In keeping with this philosophy 
we have developed verification and testing environment for Java, called Java PathFinder (JPF), which integrates model checking, program analysis 
and testing. Part of this work has consisted of building a new Java Virtual Machine that interprets Java byte code. JPF uses state compression to 
handle big states, and partial order and symmetry reduction, slicing, abstraction, and runtime analysis techniques to reduce the state space. 

 

Index Terms—Model checking, Abstraction, Runtime Analysis, static analysis, Java Path Finder, Linear time temporal logic (LTL).   
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1    INTRODUCTION 
 
In a few cases, modeling languages have been designed to 
resemble programming languages, although the focus has 
been on protocol designs. Some of these linguistic choices 
have made, and still make it feasible to more conveniently 
experiment with new algorithms and frameworks for 
analyzing system models. For example, a logic based language 
is well suited for rewriting, and a rule based guarded 
command notation is convenient for a model checker. 
Continued research in special languages is important since 
this research investigates semantically clean language 
concepts and will impact future language designs and analysis 
algorithms. Next important step for the formal methods 
subgroup of the software engineering community could be to 
focus some of its attention on real programs written in modern 
programming languages. Studying programming languages 
somehow will result in some new challenges that will drive 
the research in new directions as described in the first part of 
the paper. In the second part of the paper, we describe our 
own effort to follow this vision by presenting the development 
of verification, analysis and testing environment for Java, 
called Java PathFinder (JPF). This environment combines 
model checking techniques with techniques for dealing with 
large or infinite state spaces. These techniques include static  
analysis for supporting partial order reduction of the set of 
transitions to be explored by the model checker, predicate 
abstraction for abstracting the state space, and runtime 
analysis such as race condition detection and lock order 
analysis to pinpoint potentially problematic code fragments. 
Part of this work has consisted of building a new Java Virtual 
Machine (JVMJPF) that interprets Java byte code. JVMJPF is 
called from the model checking engine to interpret byte code 
generated by a Java compiler. It is an attractive idea to develop  
a verification environment for Java for three reasons. First, 
Java is a modern language featuring important concepts such  
as object-orientation and multi-threading within one language. 

 

 
Languages such as C and C++, for example, do not support 
multi-threading as part of their core. Second, Java is simple, 
for example compared to C++. Third, Java is compiled into 
byte code, and hence, the analysis can be done at the byte code 

level. This implies that such a tool can be applied to any 
language that can be translated into byte code'. Byte code 
furthermore seems to be a convenient breakdown of Java into 

easily manageable byte code instructions; and this seems to 
have eased the construction of our analysis tool. JPF is the 
second generation of a Java model checker developed at 
NASA Ames. The first generation of JPF (JPFI) was a translator 
from Java to the Promela language of the Spin model checker. 

 
 

2   CODE ANALYSIS 
 
It is often argued that verification technologies should be 
applied to designs rather than to programs since catching 
errors early at the design level will reduce maintenance costs 
later on. We do agree that catching errors early is crucial. State 
of the art formal methods also most naturally lend themselves 
to designs, simply due to the fact that designs have less 
complexity, which make formal analysis more feasible and 
practical. Hence, design verification is a very important 
research topic, with the most recent popular subject being 
analysis of statecharts, such as for example found in UML [1]. 
However, we want to argue that the formal methods 
community should put some of its attention on programs for a 
number of reasons that we will describe below. 
First of all, programs often contain fatal errors in spite of the 
existence of careful designs. Many deadlocks and critical 
section violations for example are introduced at a level of 
detail which designs typically do not deal with, if formal 
designs are made at all. This was for example demonstrated in 
the analysis of NASA's Remote Agent spacecraft control 



system written in the LISP programming language, and 
analyzed using the Spin model checker [2]. Here several 
classical multi-threading errors were found that were not 
really design errors, but rather programming mistakes such as 

forgetting to enclose code in critical sections. One of the 
missing critical section errors found using Spin was later 
introduced in a sibling module, and caused a real deadlock 

during flight in space, 60,000 miles from earth [18]. Another 
way of describing the relationship between design and code is 
to distinguish between two kinds of errors. On the one hand 
there are errors caused by flaws in underlying complex 
algorithms. Examples of complex algorithms for parallel 

systems are communication protocols. The other kind of errors 
are more simple minded concurrency programming errors, 
such as forgetting to put code in a critical section or causing 
deadlocks. This kind of errors will typically not be caught in a 
design, and they are a real hazard, in particular in safety 
critical systems. Complex algorithms should probably be 
analyzed at the design level, although there is no reason such 
designs cannot be expressed in a modern programming 

language. 
Second, one can argue that since modern programming 
languages are the result of decades of research, they are the 
result of good language design principles. Hence, they may be 
good design modeling languages. This is to some extent 
already an applied idea within UML where statechart 
transitions (between control states) can be annotated with 
code fragments in your favorite programming language. In 

fact, the distinction between design and program gets blurred 
since final code may get generated from the UML designs. An 
additional observation is that some program development 
methods suggest a prototyping approach where the system is 
incrementally constructed using a real programming 
language, rather than being derived from a pre constructed 
design. This was for example the case with the Remote Agent 
mentioned above. Furthermore, any research result on 

programming languages can benefit design verification since 
designs typically are less complex. 
A third and very different kind of argument for studying 
verification of real programs is that such research will force 
the community to deal with very hard problems, and this may 

drive the research into new areas. We believe for example that 
it could be advantageous for formal methods to be combined 
with other research fields that traditionally have been more 

focused on programs, such as program analysis and testing. 
Such techniques are typically less complete, but they often 
scale better. Objective of formal methods is not only to prove 
programs correct, but also to debug programs and locate 
errors. With such a more limited ambition, one may be able to 

apply techniques which are less complete and based on 
heuristics, such as certain testing techniques.  
Fourth, studying formal methods for programming languages 

may furthermore have some derived advantages for the 
formal methods community due to the fact that there is a 
tendency to standardize programming languages. This may 
make it feasible to compare and integrate different tools 
working on the same language - or on “clean subsets” of these 

languages. As mentioned above, it would be very useful to 
study the relationship between formal methods and other 

areas such as program analysis and testing techniques. 
Working at the level of programs will make it possible to 
better interact with these communities. A final derived 
advantage will be the many orders of magnitude increased 

access to real examples and users who may want to 
experiment with the techniques produced. This may have a 
very important impact on driving the research towards 

scalable solutions. 
In general, it is our hope that formal methods will play a role 
for everyday software developers. By focusing on real 
programming languages community will be able to interact 
more intensively on solving common problems. Furthermore, 

the technology transfer problem so often mentioned may 
vanish, and instead be replaced by a technology demand.  
 
3   MODEL CHECKING JAVA PROGRAMS 
 
3.1 Complexity of Language Constructs 
Input languages for model checkers are often kept relatively 

simple to allow efficient processing during model checking. Of 
course there are exceptions to this, for example Promela, the 
input notation of Spin [3], more resembles a programming 
language than a modeling language. General programming 
languages, however, contain many new features almost never 

seen in model checking input languages, for example, classes, 
dynamic memory allocation, exceptions, floating point 
numbers, method calls, etc. How will these be treated? Three 

solutions are currently being pursued by different groups 
trying to model check Java: one can translate the new features 
to existing ones, one can create a model checker that can 
handle these new features, or, one can use a combination of 
translation and a new/extended model checker. 

 
                                                                                                                          
3.1.1 Translation 
The first version of JPF, as well as the JCAT system [4], was 
based on a translation from Java to Promela. Although both 
these systems were successful in model checking some 
interesting Java programs [5], such source-to-source 
translations suffer from two serious drawbacks: 
Language Coverage — each language feature of the source 
language must have a corresponding feature in the destination 

language. This is not true of Java and Promela, since Promela 
for example, does not support floating point numbers. 
Source Required — In order to translate one source to another, 
the original source is required, which is often not the case for 
Java, since only the byte codes are available — for example in 
the case of the libraries and code loaded over the WWW. For 
Java, the requirement that the source exists can be overcome 
by translating directly from byte codes. This is the approach 

used by the BANDERA tool [6], where byte codes, after some 
manipulation, are translated to either Promela or the SMV 
model checker’s input notation. The Stanford Java model 
checker also uses this approach, by translating byte codes to 
the SAL intermediate language for model checking. Their SAL 
model checker is however specifically developed for the 
purpose of checking programs with dynamic data-structures 



and hence could be argued to fall into the custom-made model 
checker category below. 
 
3.1.2 Custom-Made Model Checker 
In order to overcome the language coverage problem it is 
obvious that either the current model checkers need to be 

extended or a new custom-made model checker must be 
developed. Some work is being done on extending the Spin 
model checker to handle dynamic memory allocation [7], but 

again in terms of Java this only covers a part of the language 
and much more is required before full Java language coverage 
will be achieved this way. With JPF we took the other route, 
we developed our own custom-made model checker that can 
execute all the byte code instructions, and hence allow the 

whole of Java to be model checked. The model checker 
consists of our own Java Virtual Machine (JVMJPF) that 
executes the byte codes and a search component that guides 
the execution. Note that the model checker is therefore an 
explicit state model checker, similar to Spin, rather than a 
symbolic one based on Binary Decision Diagrams such as 
SMV. Also, we decided that a depth-first traversal with 
backtracking would be most appropriate for checking 

temporal liveness properties (breadth-first liveness checking is 
inefficient due to the problems in detecting cycles). A nice 
side-effect of developing our own model checker was the ease 
with which we are able to extend the model checker with 
interesting new search algorithms—this would, in general, not 
have been easy to achieve with existing model checkers 
(especially not with Spin). A major design decision for JPF was 
to make it as modular and understandable to others as 

possible, but we sacrificed speed in the process—Spin is at 
least an order of magnitude faster than JPF. We believe this is 
a price worth paying in the long run. JPF is written in Java and 
uses the JavaClass package2 to manipulate class files.  
 
3.2.1 Language and Properties Supported 
The JVMJPF supports all Java byte codes, hence any program 
written in pure Java can be analyzed. Unfortunately, not all 
Java programs consist of pure Java code - one often finds that 
certain methods are defined as being native to the operating 
system. When a Java program calls methods that have no 
corresponding byte codes, then JPF cannot determine what the 
state of these code fragments will be and hence cannot handle 
programs that, for example, access the file system (user-
defined class-loaders, file I/O operations, etc.), or 
communicate over a network, contains GUI code, etc. 
Fortunately, many native methods do not have side-effects 
and hence simple wrapper-methods can be written that 
translate the inputs and outputs to the native method, which 
then allow the original method to be called and all state 
changes to happen after returning from the call. However, if 
the native method itself causes an error, JPF will not be able to 
detect it, unless its output also causes an error in the Java code. 
Furthermore, JPF can only handle closed systems, i.e. a system 
and the environment it will execute in. This however is also 
the case in testing, where a test-harness is required to close a 
system, and is not considered a drawback of the approach. 
The current model checker can check for deadlocks, invariants 
and user defined assertions in the code, as well as Linear Time 

Temporal Logic (LTL) properties. In fact JPF supports all 
properties expressible in the BANDERA tool, the interested 
reader is referred to for more detail.  
 
3.2 Complex States 
In order to ensure termination during explicit state model 
checking one must know when a state is revisited. It is 

common for a hash table to be used to store states, which 
means an efficient hash function is required as well as fast 
state comparison. The Verisoft system [8] was developed to 

model check software, but the design premise was that the 
state of a software system is too complex to be encoded 
efficiently, hence Verisoft does not store any of the states it 

visits (Verisoft limits the depth of the search to get around the 
termination problem mentioned above). Since the Verisoft 

system executes the actual code (C/C++), and has little control 
over the execution, except for some user-defined “hooks” into 
communication statements, it is almost impossible to encode 

the system state efficiently. This insight also convinced us that 
we cannot tie our model checking algorithm in with an 
existing JVM, which is in general highly optimized for speed, 
but will not allow the memory to be encoded easily. Design 
philosophy was to keep the states of the JVM in a complex 

data-structure, but one that would allow us to encode the 
states in an efficient fashion in order to determine if we have 
visited states before. Specifically, each state consists of three 

components: information for each thread in the Java program, 
the static variables (in classes) and the dynamic variables (in 
objects) in the system. The information for each thread consists 
of a stack of frames, one for each method called, whereas the 
static and dynamic information consists of information about 

the locks for the classes/objects and the fields in the 
classes/objects. Each of the components mentioned above is a 
Java data-structure. In early stages of JPF development we did 

store these structures directly in a hash table, but with terrible 
results in terms of memory and speed: 512Mb would be 

exhausted after only storing _50000 states, and _20 states could 
be evaluated each second. The solution adopted to make the 
storing of states more efficient, was a generalization of the 

Collapse method from Spin, each component of the JVM state 
is stored separately in a table, and the index at which the 
component is stored is then used to represent the component. 

More specifically, each component (for example the fields in a 
class/object) is inserted in a table for that component; if the 

specific component is already in the table its index is returned, 
and if it is unique it is stored at the next open slot and that 
index is returned. This has the effect of encoding a large 

structure into no more than an integer3 (see Figure 1). 
Collapsing states in this fashion allows fast state comparisons, 
since only the indexes need to be compared and not the 
structures themselves. The philosophy behind the collapsing 
scheme is that although many states can be visited by a 

program the underlying components of many of these states 
will be the same. A somewhat trivial example of this is when a 
statement updates a local variable within a method. The only 

part of the system that changes is the frame representing the 
method; all the other parts of the system state are unaffected 
and will collapse to the same indexes. This actually alludes to 
the other optimization we added: only update the part of the 



system that changes, i.e., keep the indexes calculated for the 
previous state the same, only calculate the one that changed 
(to date we have only done this optimization in some parts of 
the system). After making these changes the system could 

store millions of states in 512Mb and could evaluate between 
500 and 1500 states per second depending on the size of the 
state. 

 

 
 
Figure 1. Collapsing and Recreating the JVM state 

 
It was however clear from profiling the system execution that 
there was still one major source of inefficiency - the collapsing 

of states was only used for the states stored in the hash table, 
but in order to allow backtracking the un-collapsed states are 
stored in a stack. More specifically, whenever a new state is 

generated a copy of this state is made and put on the stack, 
during backtracking this state is removed again and execution 
continues. The Java “clone” operation is used to make copies 
of states, but this operation is notoriously slow since our states 
are represented by such a complex data-structure. Memory 

consumption was also high due to the complexity of each 
state, and we could seldom analyze a system with more than 
10000 states in a depth-first path. A very simple, and above all 
novel solution, however presented itself: use the reverse of the 
collapse operation to recreate a state from its collapsed 
description (see Figure 1). We could now use the collapsed 
state description in both the hash table and the stack, and 
during backtracking the collapsed state is uncompressed by 

reversing the lookup in the tables (i.e. use the index to retrieve 
the original object from the table). This saves time since 
recreating the state from its collapsed form is faster than 
copying the state, and also saves memory since we now only 
create one collapsed copy of the state, which is stored in the 
hash table, and we keep a reference to this state in a stack 
entry. Lastly, as before, since only part of the state changes 
during each transition we can also just un collapse the parts 

that changed during backtracking. These last changes 
improved memory usage 4 fold and the model checker can 
now evaluate between 6000 and 10000 states per second 
depending on the size of the state.  
 
3.3 Curbing The State Space Explosion 
Maybe the most challenging part of model checking is 
reducing the size of the state space to be explored to 
something that your tool can handle. Since designs often 
contain less detail than implementations, model checking is 
often thought of as a technique that is best applied to designs, 

rather than implementations. We believe that applying model 
checking by itself to programs will not scale to programs of 
much more than 10000 lines. The avenue we are pursuing is to 
augment model checking with information gathered from 

other techniques in order to handle large programs. 
Specifically, we are investigating the use of symmetry 
reductions, abstract interpretation, static analysis and runtime 

analysis to allow more efficient model checking of Java 
programs. Figure 2 illustrates the architecture of JPF and its 
companion tools (abstraction tool, static analyzer and runtime 
analyzer) that will be described in detail below. 
 
3.3.1   Symmetry Reductions 
The main idea behind symmetry reductions [9] is that 
symmetries induce an equivalence relation on states of the 

system, and while performing analysis of the state space (for 
example during model checking) one can discard a state if an 
equivalent state has already been explored. Typically a 

canonicalization function is used to map each state into a 
unique representative of the equivalence class. Software 
programs can in general induce a great many symmetries, but 
here we will focus on a number of symmetry related problems 
found when analyzing Java programs: class loading and two 

forms of symmetry in the heap (dynamic area). 
 

 
 
Figure 2. The JPF Tool Architecture. Dotted lines indicate iterative 
analysis. 
 
The problem we are trying to avoid is the analysis of states 
that are equivalent to previously analyzed states. Java 
programs have dynamic behavior and one cannot predict 
which classes will be loaded, objects will be instantiated, or 

even in which order these will occur. This lack of order would 
seem to suggest an appropriate representation for the static 
area (where static variables for each class are stored) and the 
dynamic area (where objects are allocated) should be as sets. 
Comparing sets is however too time consuming, but an 
obvious ordering can be used, namely, the order in which 
classes are loaded or objects created. This however means that 
states will be considered to be different, if their only difference 

is the order of class loading (similarly if the same objects are 
placed in different locations in the dynamic area). What is 
required is to ensure that the static area and dynamic area 
have a canonical representation regardless of which 



interleaving of transitions is being executed. A 
canonicalization function for the static area is simple to define, 
since we can order the locations where the static variables of a 
class will be in the static area by ordering the class names. For 

each class loader in Java the class names must be unique, and 
since we do not consider the case of more than one class 
loader being used a simple mapping of class names to 

positions in the static area is enough. For example, if class A is 
loaded before class B in one interleaving then the static 
variables for class A will be stored at position 0 in the static 
area, and this mapping A → 0 will be remembered, when class 
B is loaded the mapping B → 1 will be remembered. After 

backtracking let us assume class B is now loaded before A, 
then the mapping for B will be recalled and B’s static variables 
will be loaded at position 1 even though position 0 is available 
(class A’s static variables will be loaded there). 
Unfortunately, a similar approach with object allocation in the 
dynamic area is not sufficient since there can be many objects 
instantiated from the same class. One can however identify 
each object allocation in a Java program by uniquely 

identifying each “NEW” byte code4. This is not yet sufficient 
to define a mapping, since the same “NEW” can be executed 
more than once, for example when an allocation is in a loop. 
An occurrence number that is incremented each time the new 
is executed and decremented whenever the instruction is 
backtracked over, can then be used to identify each allocation. 
Although the combination of the new-identifier and an 
occurrence number will distinguish many cases where there is 

symmetry, it does not resolve all cases. For example if the 
same allocation code can be executed from two different 
threads the symmetry reduction will be missed and equivalent 
states will be considered different. A thread reference can be 
added to distinguish this case. Clearly there is a trade-off 
between the precision of the canonicalization function and the 
time taken to calculate it; we chose to rely only on the new-
identifier and the occurrence number in our current system. 
 
3.3.2   Abstraction 
Recently, the use of abstraction algorithms based on the theory 
of abstract interpretation, has received much attention in the 
model checking community. The basic idea underlying all of 
these is that the user specifies an abstraction function for 

certain parts of the data-domain of a system. The model 
checking system then, by using decision procedures, either 
automatically generates, on-the fly during model checking, a 
state-graph over the abstract data  or automatically generates 
an abstract system, that manipulates the abstract data, which 
can then be model checked. The trade-off between the two 
techniques is that the generation of the state-graph can be 
more precise, but at the price of calling the decision 

procedures throughout the model checking process, whereas 
the generation of the abstract system requires the decision 
procedures to be called proportionally to the size of the 
program. It has been our experience that abstractions are often 
defined over small parts of the program, within one class or 
over a small group of classes, hence we favor the generation of 
abstract programs, rather than the on-the-fly generation of 
abstract state-graphs. Also, it is unclear whether the abstract 

state-graph approach will scale to systems with more than a 
few thousand states, due to the time overhead incurred by 
calling the decision procedures. Specifically we have 
developed an abstraction tool for Java that takes as input a 

Java program annotated with user-defined predicates and, by 
using the Stanford Validity Checker (SVC), generates another 
Java program that operates on the abstract predicates. For 

example, if a program contains the statement x++ and we are 
interested in abstracting over the predicate x==0, written as 
Abstract.addBoolean ("B", x == 0), then the increment 
statement will be abstracted to the code: “if (B) then B = false 
else B = Verify.randomBool ()” where nondeterministic choice 

is indicated by the randomBool () method that gets trapped by 
the model checker. The BANDERA tool uses similar 
techniques to abstract the data-domains of, for example, an 
integer variable to work over the abstract domains positive, 
negative and zero (the so-called sign abstraction), by using the 
PVS model checker. The novelty of our approach lies in the 
fact that we can abstract predicates over more than one class: 
for example, we can specify a predicate Abstract.addBoolean 

("xGTy", A.x > B.y) if class A has a field x and class B has a 
field y. The abstracted code allows for many instantiations of 
objects of class A and B to be handled correctly. Although our 
Java abstraction tool is still under development we have had 
very encouraging results. For example we can, in a matter of 
seconds, abstract the omnipresent infinite-state Bakery 
algorithm written in Java to one that is finite-state and can be 
checked exhaustively. Abstractions for model checking often 

over-approximate the behavior of the system, in other words, 
the abstracted system has as a subset the behaviors of the 
original system. Since the properties that are typically checked 
are universally quantified over all paths, over-approximations 
preserve correctness. If a property holds in the abstracted 
system it is also true of the original system. Unfortunately, 
when it comes to model checking programs, or any other type 
of system for that matter, it is often the case that we are 

interested in finding errors, not showing correctness. And here 
lies a problem:- 
Over-approximations do not preserve errors, i.e. errors in the 
abstract system might be due to new behaviors that were 
added and are not present in the original system. Eliminating 

these spurious errors is an active research area. We adopted a 
pragmatic approach to this problem that seems to work very 
well in practice. The basic idea is as follows: Any path in the 

abstracted program that is free of nondeterministic choices is 
also a path of the original program; hence if an error occurs on 
such a “choose-free” path then it is not spurious. JPF has a 
special mode in which it searches for errors only on paths that 
are choose-free — since nondeterminism in JPF is trapped by 

recognizing special method calls; it is easy to truncate a search 
whenever such a call occurs. Of course, if no error is found in 
this special mode, then the result is inconclusive since an error 

might exist, but the abstraction is not adequate to find the 
error in the choose-free mode. The next step is now to look for 
errors that may contain nondeterministic choices, if such an 
error exists, we can run this path in a simulation mode on the 
original program (there is a 1-to-1 mapping of code from the 

abstract to the original code) and if it diverges, i.e. the abstract 
path says statement s1 should be executed but the concrete 



program says s2 should be executed, then we can use the last 
decision point taken before divergence to refine the 
abstraction. If the path does not diverge we can also be sure 
that the error is not spurious. Note that we do not need to 

symbolically execute the abstract path on the concrete 
program, since the Java programs we check are by definition 
closed systems, i.e. they take no unknown input, and also each 

program has a single initial state. 
 
3.3.3   Static Analysis 
Static analysis of programs consists of analyzing programs 
without executing them. In general, the analysis is performed 
without making assumptions about the inputs of the program. 

The analysis results are therefore valid for any set of inputs. A 
wide variety of techniques fall under the static analysis 

umbrella; e.g., data flow analysis, set and constraint 
resolution, abstract interpretation, and theorem proving can 
all be applied to static analysis problems (with various degrees 

of success). They all derive some properties about a program. 
These properties are then used in slicing, code optimization, 
code parallelization, abstract debugging, code verification, 
code understanding, or code re-engineering for examples. The 
main aim of static analysis lies in its potential for reducing the 

size of the state space generated by a program. Therefore, 
focus is on three static analysis problems that can result in 
state space reduction: static slicing, partial evaluation, and 

partial order computation. Static slicing takes a program and a 
slicing criterion and generates a smaller program that is 
functionally equivalent to the original program with regard to 
the criterion. Partial evaluation propagates constant values 
and simplifies expressions in the process. Partial order 

computation focuses on identifying statements that can be 
safely interleaved with any statement on a different thread. 
The combined use of these analyses results in smaller state 

spaces, and therefore, helps reduce the state explosion 
problem. However, they do it in different manners. On the one 

hand, static slicing and partial evaluation generate a 
(functionally equivalent) smaller program that results in a 
smaller state space as shown in Figure 3. Black states indicate 

states that directly affect the slicing criterion (e.g., because 
they modify a variable involved in a property we want to 
check). After slicing, only the states affecting the slicing 

criterion remain in the state space. On the other hand, partial 
order computation does not change the size of the program, 

but its results can be used to further reduce the state space by 
eliminating unnecessary interleavings. Static slicing and its 
application in model checking is discussed ahead also partial 

order computation approach in brief. 
 

 
 
Figure 3 Reduction of programs using static slicing 
 
One approach to reducing the size of programs, and therefore 
the size of the state space to be model checked, is to eliminate 
statements that are not relevant to the property one wants to 
verify. In static analysis, this process is known as program 
slicing. It has been studied quite extensively and the interested 
reader can find a detailed survey on slicing in. In general, a 
program slice is defined by the parts of a program that may 
affect (or be affected by) a slicing criterion. Typically a slicing 
criterion consists of a set of program points of interest. The 
sliced program is smaller than the original program and is 
functionally equivalent with respect to the slicing criterion. In 
this paper, we focus on works that use slicing as a program 
reduction tool for model checking as shown in. When slicing 
for model checking, criteria are often related to the properties 
that one wants to check, e.g., for a given property P, the slicing 
criterion is the set of program points affecting the values of the 
variables present in P. Therefore, every statement affecting the 
slicing criterion should be present in the slice (or sliced 
program); otherwise, the resulting program is not functionally 
equivalent to the original program. If such a statement was 
missing from the slice, it could result in a situation where the 
model checker states that a property holds on the sliced 
program even though it does not hold on the original 
program. This type of slicing is called closure slicing: a closure 
slice of a program P with respect to program point p and 
variable x consists of all statements that may affect the value of 
x at p. JPF uses the slicing tool of the BANDERA toolset which 
implements the work of Hatcliff et al. on static slicing of 
concurrent Java programs. Their technique consists of 

computing a set of program dependencies affecting the slicing 
criteria. These dependencies include the traditional 
dependencies (data, control and divergence) for sequential 
programs as well as their counterparts (interference, 
synchronization and ready dependencies) for concurrent 
programs. Informally, interference dependencies represent 
cases where the definition of shared variables can reach across 
threads. Synchronization dependence focuses on the use of 

synchronize statements; it basically states that if a variable is 
defined at a node inside some critical region, then the locking 
associated with that region must be preserved (i.e., the inner-
most enclosing synchronize statement must be present in the 
slice). Ready dependence states that a statement n is 
dependent on a statement m if m’s failure to complete (e.g., 
because a wait or notify never occurs) can block the thread 
containing n. In BANDERA, slicing is not performed on the 



Java source code, but on its (3-address code) representation 
called Jimple (Jimple is an intermediate representation for Java 
used in the Soot compiler developed at McGill University). In 
BANDERA, Jimple code is then translated into Promela or 

SMV code and then model checked. In order to use slicing and 
abstraction iteratively, and, since abstraction works on the 
source code level, we have to convert the sliced Jimple 

program back to Java source code using annotations that 
describe the original Java program. This approach has 
benefited JPF in several ways. First, using BANDERA, we can 
extract slicing criteria (i.e., program points) automatically from 
the properties verified by JPF. Second, BANDERA also 

provides support for partial symbolic evaluation, which yields 
smaller state spaces. 
Third, we can re-use the dependence analysis performed by 
BANDERA to compute partial order information. Within JPF, 
static analysis is also used to determine which Java statements 
in a thread are independent of statements in other threads that 
can execute concurrently. This information is then used to 
guide the partial-order reductions built into JPF. Partial-order 

reduction techniques ensure that only one interleaving of 
independent statements is executed within the model checker. 
It is well established from experience with the Spin model 
checker that partial-order reductions achieve an enormous 
state-space reduction in almost all cases. We have had similar 
experience with JPF, where switching on partial-order 
reductions caused model checking runs that ran for hours to 
finish within minutes. We believe model checking of (Java) 

programs will not be tractable in general if partial-order 
reductions are not supported by the model checker and in 
order to calculate the independence relations required to 
implement the reductions, static analysis is required.  
 
3.3.4   Runtime Analysis 
Runtime analysis is conceptually based on the idea of 
executing a program once, and observing the generated 

execution trace to extract various kinds of information. This 
information can then be used to predict whether other 
different execution traces may violate some properties of 

interest (in addition of course to demonstrating whether the 
generated trace violates such properties). The important 
observation here is that the generated execution trace itself 

does not have to violate these properties in order for their 
potential violation in other traces to be detected. Runtime 

analysis algorithms typically will not guarantee that errors are 
found since they after all work on a single arbitrary trace. 
They also may yield false positives in the sense that analysis 

results indicate warnings rather than hard error messages. 
What is attractive about such algorithms is, however, that they 
scale very well, and that they often catch the problems they 
are designed to catch. That is, the randomness in the choice of 
run does not seem to imply a similar randomness in the 

analysis results. In practice runtime analysis algorithms will 
not store the entire execution trace, but will maintain some 
selected information about the past, and either do analysis of 

this information on-the-fly, or after program termination. An 
example is the data race detection algorithm Eraser [10] 
developed at Compaq, and implemented for C++ in the Visual 
Threads tool (Harrow, 2000). Another example is a locking 

order analysis called Lock-Tree which we have developed. 
Both these algorithms have been implemented in JPF to work 
on Java programs. Below we describe these two algorithms, 
and how they can be run stand-alone in JPF to identify data 

race and deadlock potentials in Java programs. Then we 
describe how these algorithms are used to focus the model 
checker on part of the state space that contains these potential 

data race and deadlock problems. Note that runtime analysis 
is different from runtime monitoring, as supported in systems 
such as Temporal Rover and Mac, where certain user-specified 
properties are monitored during execution. We are, however, 
currently also exploring the integration of this kind of 

technology with runtime analysis. 
 
Data Race Detection 
The Eraser algorithm detects data race potentials. A concrete 
data race occurs when two concurrent threads simultaneously 
access a shared variable and when at least one access is a 
write; hence the threads use no explicit mechanism to prevent 
the accesses from being simultaneous. The program is 
guaranteed data race free if for every variable there is a 

nonempty set of locks that all threads own when they access 
the variable. The Eraser algorithm can detect that a data race 
on a variable is possible (potential) even though no concrete 
data races have occurred, by observing and remembering 
which locks are active whenever it is accessed. The algorithm 
works by maintaining for each variable x a set set(x) of those 
locks active when threads access the variable. Furthermore, for 
each thread t a set (t) is maintained of those locks taken by the 
thread at any time. Whenever a thread t accesses the variable 
x, the set set(x) is refined to the intersection between set(x) and 
set (t) (set(x):= set(x) \ set (t)), although the first access just 
assigns set (t) to set(x). Our algorithm differs from [10] since 
there the initial value of set(x) is the set of all locks in the 
program. In a Java program objects (and thereby locks) are 
generated dynamically, hence the set of all locks cannot be 
pre-calculated. A race condition may be possible if set(x) ever 
becomes empty. First of all, shared variables are often 
initialized without the initializing thread holding any locks. 
The above algorithm will yield a warning in this case, 
although this situation is safe. Another situation where the 
above algorithm yields unnecessary warnings is if a thread 

creates an object, where after several other threads read the 
object’s variables (but no-one is writing after the initialization). 
Figure 4 illustrates this state machine. The variable starts in 
the VIRGIN state. Upon the first write access to the variable, 
the EXCLUSIVE state is entered. The lock set of the variable is 
not refined at this point. This allows for initialization without 
locks. Upon a read access by another thread, the SHARED 
state is entered, now with the lock refinement switched on, but 

without yielding warnings in case the lock set goes empty. 
This allows for multiple readers (and not writers) after the 
initialization phase. Finally, if a new thread writes to the 
variable, the SHARED-MODIFIED state is entered, and now 
lock refinements are followed by warnings if the lock set 
becomes empty. 

 



 
 
Figure 4. The Eraser algorithm associates a state machine with each 
variable x.  
 
The state machine describes the Eraser analysis performed 
upon access by any thread t. The pen heads signify that lock 
set refinement is turned on. The p sign signifies that warnings 
are issued if the lock set becomes empty. 
 
The generic Eraser algorithm has been implemented to work 
on Java by modifying the JVMJPF to perform this analysis 
when the eraser option is switched on. Each thread is 
associated with a lock set (a Java object representing a set), and 
each variable (field) in each object is associated with an 
automata of the type shown in Figure 4 (a Java object 
representing the automata and lock set). The JVMJPF accesses 
the byte codes via the JavaClass package, which for each byte 
code delivers a Java object of a class specific for that byte code. 
The JVMJPF extends this class with an execute method, which 
is called by the verification engine, and which represents the 
semantics of the byte code. The runtime analysis is obtained 
by instrumenting the execute methods of selected byte codes, 
such as the GETFIELD and PUTFIELD byte codes that read 
and write object fields, the static field access byte codes 
GETSTATIC and PUTSTATIC, and all array accessing byte 
codes such as for example IALOAD and IASTORE. The byte 
codes MONITORENTER and MONITOREXIT, generated from 
explicit synchronized statements, are instrumented with 
updates of the lock sets of the accessing threads to record 
which locks are owned by the threads at any time; just as are 
the byte codes INVOKEVIRTUAL and INVOKESTATIC for 
calling synchronized methods. The INVOKEVIRTUAL byte 
code is also instrumented to deal with the built-in wait 
method, which causes the calling thread to release the 
lock on the object the method is called on. Instrumentations 
are furthermore made of byte codes like RETURN for 
returning from synchronized methods, and ATRHOW that 
may cause exceptions to be thrown within synchronized 
contexts. 

 
Deadlock Detection 
A classical deadlock situation can occur where two threads 
share two locks and attempt to take the locks in different 
order. An algorithm that detects such lock cycles must in 
addition take into account that a third lock may protect 
against a deadlock like the one above, if this lock is taken as 
the first thing by both threads, before any of the other two 
locks are taken. In this situation no warnings should be 

emitted. Such a protecting third lock is called a gate lock. The 
algorithm for detecting this situation is based on the idea of 
recording the locking pattern for each thread during runtime 
as a lock tree, and then, when the program is terminated, 

comparing the trees for each pair of threads. The lock tree that 
is recorded for a thread represents the nested pattern in which 
locks are taken by the thread. As an artificial example, 

consider the code fragments of two threads in Figure 5. Each 
thread takes four locks L1, L2, L3 and L4 in a certain pattern. 
For example, the first thread takes L1; then L3; then L2; then it 
releases L2; then takes L4; then releases L4; then releases L3; 
then releases L1; then takes L4; etc. 

 
 
Figure 5 Synchronization behavior of two threads 
 
This pattern can be observed, and recorded in a finite tree of 
locks for each thread, as shown in Figure 6, by just running the 

program. As can be seen from the trees, a deadlock is potential 
because thread 1 in its left branch locks L3 (node identified 
with 2) and then L4 (4), while thread 2 in its right branch takes 
these locks in the opposite order (11, 12). There are 
furthermore two additional ordering problems between L2 
and L3, one in the two left branches (2, 3 and 9, 10), and one in 
the two right branches (6, 7 and 12, 13). However, neither of 
these pose a deadlock problem since they are protected by the 

gate locks L1 (1, 8) respectively L4 (5, 11). Hence, one warning 
should be issued. 

 

 
Figure 6. Lock trees corresponding to threads in Figure 5. 

 
When being built, each tree has at any time a current node, 
where the path from the root (identifying the thread) to that 
node represents the lock nesting at this point in the execution. 
The lock operation creates a new child of the current node if 
the new lock has not previously been taken (is not in the path 
above). The unlock operation just backs up the tree if the lock 
really is released, and not owned by the thread in some other 
way. When the program terminates, the analysis of the lock 

trees is initiated. Each pair of trees (t1; t2) are compared, and 
for every node n in t1 it is checked that no node below n is 
above any occurrence of n in t2. In order to avoid issuing 



warnings when a gate lock prevents a deadlock, occurrences 
of n in t2 are marked after being examined, and nodes below 
marked nodes are not considered until the marks are removed 
when the analysis backtracks from the corresponding node in 

t1. The following byte codes will activate calls of the lock and 
unlock operations in these tree objects for the relevant threads: 
MONITORENTER and MONITOREXIT for entering and 

exiting monitors, INVOKEVIRTUAL and INVOKESTATIC for 
calling synchronized methods or the built-in wait method of 
the Java threading library, byte codes like RETURN for 
returning from synchronized methods, and ATRHOW that 
may cause exceptions to be thrown within synchronized 

contexts. 
 
4    USING RUNTIME ANALYSIS TO GUIDE MODEL 
CHECKING 
 
The runtime analysis algorithms described in the previous two 
sections can provide useful information to a programmer as 
standalone tools. In this section we will describe how runtime 
analysis furthermore can be used to guide a model checker. 
The basic idea is to run the program in simulation mode first, 
using the JVMJPF simulator, with all the runtime analysis 
options turned on, thereby obtaining a set of warnings about 
data races and lock order conflicts. The threads causing the 
warnings are stored in a race window. When the simulation is 
terminated, forced or according to the program logic, the 
resulting race window (in fact an extension of it, see below) 
will then be fed into the model checker, which will now search 
the state space, but now only focusing its attention on the 
threads in the window. That is, the model checker only 
schedules threads that are in the window. However, before the 
model checker is applied, the race window is extended to 
include threads that create or otherwise influence the threads 
in the original window. The purpose is to obtain a small self-
contained sub-system containing the race window, which can 
be meaningfully model checked. The extended window can be 
thought of as a dynamic slice of the program. The extension is 
calculated on the basis of a dependency graph, created by a 
dependency analysis also performed during the pre-
simulation. More specifically, the dependency graph is a 
mapping from threads t to triples (α, ρ, ω), where α is the 
ancestor thread that spawned t, ρ is the set of objects that t 
reads from, and ω is the set of objects that t writes to. The 
window extension operation performs a fix-point calculation 
by creating the set of all threads reachable from the original 
window by repeatedly including threads that have spawned 
threads in the window, and by including threads that write to 
objects that are read by threads in the window. The following 
byte codes are instrumented to operate on the dependency 
graph: INVOKEVIRTUAL for invoking the start method on a 
thread; and PUTFIELD, GETFIELD, PUTSTATIC, GETSTATIC 
for accessing variables. 

 
 
 
 

5     CONCLUSION 
 
The second part of the paper described how we applied this 

philosophy to the analysis of Java programs. Specifically, we 
have shown that model checking can be applied to Java 
programs, without being hampered by the perceived problems 
often cited as reasons for why model checking source code 
will not work. In the process we have shown that augmenting 

model checking with symmetry reductions, abstract 
interpretation, static analysis and runtime analysis can lead to 
the efficient analysis of complex (Java) software. Although the 

combination of some of these techniques is not new, to the best 
of our knowledge, our use of symmetry reductions for class 
loading and heap allocation, the semi-automatic predicate 
abstraction across different classes, the use of static analysis to 
support partial-order reductions and the use of runtime 
analysis to support model checking are all novel contributions. 
Although it is hard to quantify the exact size of program that 
JPF can currently handle – “small” programs might have 

“large” state-spaces A nice side-effect of developing our own 
model checker was the ease with which we are able to extend 
the. model checker with interesting new search algorithms-this 
would, in general, not have been easy to achieve with existing 
model checkers (especially not with Spin). A major design 

decision for JPF was to make it as modular and 
understandable to others as possible, but we sacrificed speed 
in the process - Spin is at least an order of magnitude faster 

than JPF.  
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